An Approximation of a Definitive Survey of Notes
on the Future State of Hash Functions;
Pre-re-visited Redux Encore

Saqib A. Kakvi

EUROCRYPT 2019 Rump Session

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1
> PANIC!!I

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

» PANIC!II

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1
> PAMHEHITT

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1
> PANHEHITT

» We have other hash functions

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1
> PANHEHITT

» We have other hash functions

» SHA-2 and SHA-3 are still fine!®

1| hope! I didn't bother to check but nobody will notice.

SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

> PANHEHIT

» We have other hash functions

» SHA-2 and SHA-3 are still fine!®

» But why should be stick to the SHA family??

!| hope! | didn't bother to check but nobody will notice.
2My SHA-3 candidate was rejected due “lack of rigour”

The Solution

» Create a new family of hash functions?.

3I'll just make my own hash function family.

The Solution

» Create a new family of hash functions3.

» Encourage the usage of organic primitives.

3I'll just make my own hash function family.
“Are sponges organic? This joke doesn't work if they are.

The Solution

» Create a new family of hash functions?.

» Encourage the usage of organic primitives.*

» And range-free® primitives.

31'll just make my own hash function family.
“Are sponges organic? This joke doesn't work if they are.
®It's like free range, but better! It makes my acronym work!

The Solution

» Create a new family of hash functions3.

» Encourage the usage of organic primitives.*

» And range-free® primitives.

» Aim for wholesome primitives.®”

3I'll just make my own hash function family.

“Are sponges organic? This joke doesn't work if they are.
®|t's like free range, but better! It makes my acronym work!
®Again, for the acronym, but hide the details in footnotes!
"Surely nobody will notice.

The Solution

Create a new family of hash functions?.

Encourage the usage of organic primitives.*

67

>

>

» And range-free® primitives.

» Aim for wholesome primitives.
>

| think we can all agree these are good things!

3I'll just make my own hash function family.

“Are sponges organic? This joke doesn't work if they are.
®|t's like free range, but better! It makes my acronym work!
®Again, for the acronym, but hide the details in footnotes!
"Surely nobody will notice.

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

W holesome

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

W holesome

O rganic

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

W holesome
O rganic

R ange-free

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

W holesome
O rganic
R ange-free
T rusted

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function
- of

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function
- of
L arge &

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function
- of

L arge &

E xceptionally

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function
- of

L arge &

E xceptionally

S trong

The Solution:
AN ALTERNATIVE HASH FUNCTION FAMILY!

holesome
rganic
ange-free

rusted

T 430 S

ash-function
- of

arge &
xceptionally
trong

nw umr-r

ecurity

Syntax and Security

» Block sizes are fixed at 1 million bits for technical reasons.

Syntax and Security

» Block sizes are fixed at 1 million bits for technical reasons.

» Hash inputs are padded up to the next million bits.

Syntax and Security

» Block sizes are fixed at 1 million bits for technical reasons.
» Hash inputs are padded up to the next million bits.

» Security is defined as:
linput|
|output|

Syntax and Security

» Block sizes are fixed at 1 million bits for technical reasons.
» Hash inputs are padded up to the next million bits.

» Security is defined as:
linput|
|output|

» Security is measured on parts per million (ppm).

Syntax and Security

v

Block sizes are fixed at 1 million bits for technical reasons.

» Hash inputs are padded up to the next million bits.

v

Security is defined as:
linput|
|output|

» Security is measured on parts per million (ppm).

v

For high security we need a low ppm, but not too low.

Syntax and Security

v

Block sizes are fixed at 1 million bits for technical reasons.

» Hash inputs are padded up to the next million bits.

v

Security is defined as:
linput|
|output|

v

Security is measured on parts per million (ppm).

v

For high security we need a low ppm, but not too low.
» Optimal ppm= 47. 21 < ppm< 999 is secure.®

8Detailed explanation & formulae are in the Full Version.

First candidate: WORTH-LESS-1 (<))

» We first measure the Hamming weight of the block w.

First candidate: WORTH-LESS-1 (<))

» We first measure the Hamming weight of the block w.
> We compute:

~ 1,000,000

First candidate: WORTH-LESS-1 (<))

» We first measure the Hamming weight of the block w.
> We compute:

~ 1,000,000

» The output sets are sets of divine numbers Dyyr chosen using
a magical known method from fietten literature.

First candidate: WORTH-LESS-1 (<))

» We first measure the Hamming weight of the block w.

> We compute:
w
WMI = ——i——.
1,000, 000

» The output sets are sets of divine numbers Dyyr chosen using
a magical known method from fietien. literature.
» We then pick the nt" element of the set where:

n mod |DWMI|-

w+ el

First candidate: WORTH-LESS-1 (<))

» We first measure the Hamming weight of the block w.
> We compute:

~ 1,000,000

» The output sets are sets of divine numbers Dyyr chosen using
a magical known method from fietien. literature.
» We then pick the nt" element of the set where:

n mod |DWMI|-

w+ el

» The hash of that block is then Dyyz[n] x 7.

First candidate: WORTH-LESS-1 (<))

>
>

We first measure the Hamming weight of the block w.
We compute:

~ 1,000,000

The output sets are sets of divine numbers Dyyr chosen using
a magical known method from fietien. literature.
We then pick the nth element of the set where:

n = mod |DWMI|-

w+ el

The hash of that block is then Dyyz[n] x .
The final hash is the concatenation of all the block has values.

’[|m|/1 ,000 0001]D

<1 (m) = ‘ [nj] X 7Tj.

First candidate: WORTH-LESS-1 (<))

» Security of <, is between 25ppm and 47ppm.

First candidate: WORTH-LESS-1 (<))

» Security of <, is between 25ppm and 47ppm.

» This depends on the input string and choice of divine numbers.

First candidate: WORTH-LESS-1 (<))

» Security of <, is between 25ppm and 47ppm.
» This depends on the input string and choice of divine numbers.

» This helps to confuse attackers!

First candidate: WORTH-LESS-1 (<))

» Security of <, is between 25ppm and 47ppm.
» This depends on the input string and choice of divine numbers.
» This helps to confuse attackers!

> Also weeds out lazy developers!

First candidate: WORTH-LESS-1 (<))

Security of <, is between 25ppm and 47ppm.

This depends on the input string and choice of divine numbers.

>
>
» This helps to confuse attackers!
> Also weeds out lazy developers!
>

Only committed devs will implement multiple check algorithms.

First candidate: WORTH-LESS-1 (<))

Security of <, is between 25ppm and 47ppm.

This depends on the input string and choice of divine numbers.

Also weeds out lazy developers!
Only committed devs will implement multiple check algorithms.

>

>

» This helps to confuse attackers!

>

>

» THERE ARE NO COLLISIONS!!! GUARANTEED!!!®

Not an actual guarantee. Terms and conditions apply.

Conclusions

» Newer, better, cooler, shinier hash function family!

Conclusions

» Newer, better, cooler, shinier hash function family!

» First candidate, which is super secure!

Conclusions

» Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!

» More candidates welcome!

Conclusions

» Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!
» More candidates welcome!

» Full version available at

Conclusions

> Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!

> More candidates welcome!

» Full version available at

www.NotAFakeWebsite.com/CreditCardBorrower. js.exe.pdf

Conclusions

> Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!

> More candidates welcome!

» Full version available at

www.NotAFakeWebsite.com/CreditCardBorrower. js.exe.pdf

Conclusions

> Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!

> More candidates welcome!

» Full version available at

www.NotAFakeWebsite.com/CreditCardBorrower. js.exe.pdf

THANK YOU!

