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SHA-1 IS BROKEN!!!

» Collisions have been found in SHA-1

> PANHEHIT

» We have other hash functions

» SHA-2 and SHA-3 are still fine!®

» But why should be stick to the SHA family??

!| hope! | didn't bother to check but nobody will notice.
2My SHA-3 candidate was rejected due “lack of rigour”
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The Solution

Create a new family of hash functions?.

Encourage the usage of organic primitives.*

67

>

>

» And range-free® primitives.

» Aim for wholesome primitives.
>

| think we can all agree these are good things!

3I'll just make my own hash function family.

“Are sponges organic? This joke doesn't work if they are.
®|t's like free range, but better! It makes my acronym work!
®Again, for the acronym, but hide the details in footnotes!
"Surely nobody will notice.
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v

Block sizes are fixed at 1 million bits for technical reasons.

» Hash inputs are padded up to the next million bits.

v

Security is defined as:
linput|
|output|

v

Security is measured on parts per million (ppm).

v

For high security we need a low ppm, but not too low.
» Optimal ppm= 47. 21 < ppm< 999 is secure.®

8Detailed explanation & formulae are in the Full Version.
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First candidate: WORTH-LESS-1 (<))

>
>

We first measure the Hamming weight of the block w.
We compute:

~ 1,000,000

The output sets are sets of divine numbers Dyyr chosen using
a magical known method from fietien. literature.
We then pick the nth element of the set where:

n = mod |DWMI|-

w+ el

The hash of that block is then Dyyz[n] x .
The final hash is the concatenation of all the block has values.

’[|m|/1 ,000 0001]D

<1 (m) = ‘ [nj] X 7Tj.
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Security of <, is between 25ppm and 47ppm.

This depends on the input string and choice of divine numbers.

Also weeds out lazy developers!
Only committed devs will implement multiple check algorithms.

>

>

» This helps to confuse attackers!

>

>

» THERE ARE NO COLLISIONS!!! GUARANTEED!!!®

Not an actual guarantee. Terms and conditions apply.
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Conclusions

> Newer, better, cooler, shinier hash function family!
» First candidate, which is super secure!

> More candidates welcome!

» Full version available at

www.NotAFakeWebsite.com/CreditCardBorrower. js.exe.pdf

THANK YOU!



