BLOCKCHAIN
TECHNOLOGY
LAB

Timed Signatures and Zero-Knowledge Proofs

~Timestamping in the Blockchain Era-

Aydin Abadi Aggelos Kiayias

Michele Ciampi Vassilis Zikas

Timestamping

e The time stamping process provides a temporal order
among a set of events

e The newspapers have this feature

Why is Timestamping important?

e Proving the date of content creation (e.g. patents, keeping
track of the history of goods)

e Markets in Financial Instruments Directive Il (MIiFID II): Any
event required for trading venues has to be timestamped
accordingly to a unique clock.

State of the art

e Server aided model [, O1]
e The previous approach has been improved in many aspects (e.g.

[, , 17)

e Distributed scenarios:

1. the documents can be jointly signed by n parties (incentive
issues)

2. using the blockchain (e.g. [:] OriginStamp,
Guardtime)

e UC formalizations:
e Server aided model []
e Non-interactive timestamping via VDF [LSS19]

Tal Moran, Ronen Shaltiel, Amnon Ta-Shma: JoC

Landerreche, Schaffner, Stevens: ePrint

Timestamping via a distributed ledger
éClock

Genesis T6

— ¢ ¢ ¢ =—————— > B _> D
>

Timestamping via a distributed ledger
éClock

Genesis T6

el > B—>D
>

. 'Live-ness
- Immutability

Timestamping via a distributed ledger
éClock

Genesis Te

- - Ledger functionality
Liveness proposed in [BMTZ

Immutability CRYPTO 17]

Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas: CRYPTO17

Backdate security via a distributed ledger
Genesis Ts éClOCk Te

Backdate security via a distributed ledger
Genesis Ts éClOCk Te

Backdate security via a distributed ledger
Genesis Ts éClOCk Te

Backdate security via a distributed ledger

éClock
Genesis Ts Te T7

block

Backdate security via a distributed ledger
éClock

Genesis

Backdate security via a distributed ledger
éClock

Genesis Ts

AN
— ¢ ¢ ¢ =— A
3

At time T, the rabbit cannot
be convinced tht @ was
sighed before

Backdate security via a distributed ledger
éClock

Genesis Ts

AN
— ¢ ¢ ¢ =— A
[1]

At time T, the rabbit cannot
be convinced tht @ was
sighed before

Backdate security via a distributed ledger
éClock

Genesis T6

ii
— ¢ ¢ ¢ =— A A
o0

At time T, the rabbit cannot

be convinced that @ was t This protocol allows
signed before ito postdate a signature]

Backdate security via a distributed ledger
éClock

Genesis T6

ii
— ¢ ¢ ¢ =— A A
o0

At time T, the rabbit cannot

be convinced that @ was t This protocol allows
signed before ito postdate a signature;

! Let’s embed un unpredictable §
random value inside the §
signature 3

The Ledger has no source of randomness

The ledger functionality is aimed to abstract the
consensus layer of Blockchains!

Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas: CRYPTO17

The Ledger has no source of randomness

The ledger functionality is aimed to abstract the
consensus layer of Blockchains!

But Bitcoin/Ouroboros/Algorand... protocol does have
“fresh” randomness!
e The honest miners’ nonces

e |Implicit in all security proofs
e The honest miners’ keys
e The honest miners’transactions

Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas: CRYPTO17

The Ledger has no source of randomness

The ledger functionality is aimed to abstract the
consensus layer of Blockchains!

But Bitcoin/Ouroboros/Algorand... protocol does have
“fresh” randomness!
e The honest miners’ nonces
e |Implicit in all security proofs
e The honest miners’ keys
e The honest miners’transactions

Since Bitcoin/Ouroboros implements the ledger, its
contents would have similar properties

How can we add randomness to ledger?

v
@

Let’s design a new ledger

How can we add randomness to ledger?

Let’s design a new ledger

General: The functionaliy s parametrized by four agorthims Valdate, ExtendPokey, Blodkiy and predicttime, along
with two € N. The nages variables state, NxtBC, buffer, vo, and T
described above. Initially, state (= (.m. ~ NXCBC i ¢, buffax : -s 7g, = 0.
For each party P\ € Y 1) and » current-state view state,
(initially set to em; ﬂ-‘[Algorithm ExtendPolicy for gum,,.); =
Party managem|
and the (sub-set) of
P H, Pos are all
already then it is of
sy >0, 0t s alsd
from Pps or H) 4
A party is conside Nat ¢ DmavirExtivsion(£]], state, BxtBC, butfer, fieaes) o Extenslon If adversary violates policy.
— Let 72, be current ledger time (computed from T5)
L’:“’L:’f:ﬁ::“:. Parse NxtBC as a vector {(hFlag, NxtBC,), - . (hFlag, NxtBC,))
pome e Nee o Initialize Result
LLaPCP if |statel > windowSize then o Determine time of the block which is windowSize blocks behind the state head
Set Tigy ¢ Tarare[lstate| ~ vindowsSize + 1]
olse
Set 140 -0
(a) Set oldValid TxMissing «+- false o Flag to keep track whether old enough, valid transactions are inserted.
for each list ¥xeBC, of transaction IDs do & Compute the next state block and verify validity
e
Use the txid contained in NxtBC, to determine the list of transactions
(c) For o Let 1% w (tx1,. .., EXepe,) denote the transactions of ¥xtBC,
(d) 1f thd if tx) is not a cain-base transaction then
for af return Ny
else
3. Depending -\'. - Xy
~ Subn for j =2 to |NxtBC,| do
"I Set at, + Nockﬂyg(‘\‘.)
the if Vakd Txg(tx,, state|[st,) = 0 then
() _ return Ne o Default Extenslon If adversarlal proposal is invalid
®) Ny Nillexy
() Set st, « blockifyg (N)
~ Reod if the propasal s declared to be an honest block, .., hFlag, = 1 then
s for each BTX = (tx,txid, ', Pi) € butfer of an honest party | with time ' < ns ~ =22 do
retul if Vakd Txg(tx, state||st,) = 1 but tx & N, then
- Mai oldValid TxMissing « true o A transaction is missing in adversarial propesal.
N« N||¥,
state ¢ state|[st,
Taters + Torarel|Te
¢ max{{vindouSize} U {k | sty € state A proposal of sty had hFlag = 1}} © Determine mast recent
honestly-generated block in the interval behind the head
if |state| ~ § > n then
return Ny & Adversary proposed too few honestly generated blocks
if |state| > windouSize then
& Update e the time of the state block which is windowSize blodks behind the head of the current,
possibly extended state
Set T 4 Tarare||state| — vindowSize + 1]
clse
Set Tyou +
1f 7o = Tiow < BINTi%eyiace then v Ensure that ledger does not proceed too fast
return ¢
else If iy > 0 and 1 - Moy > BAXTi%0yins:e then o A sequence of blocks cannot take too much time.
return Ny
olse if 1y =0 and 7. — Ty > 2 - maxTioey e then & Bootstrapping cannot take too much time
return
else if oidValidTxMissing then & If ot all old enough, valid transactions have been included
lﬂt\lf_ll 4t
return N

functlon ExrumPuuﬂ(IT state, NxtBC, buffer, «.m.J

2. 16 1 was red

(b) Com|
stat

Fienra 12: Tha avtend nalicv of the Riteoin Tadeor

How can we add randomness to ledger?

Let’s design a new ledger

Genorali The functionalty |« paramtriaed by four algorkins Valiéat, ExtendPokcy, Blockiy and preic-tme, along
with two € N. The nages variables state, NxtBC, buffer, vo, and T
described above. Initially, state (= (.m. ~ NXCBC i ¢, buffax : -s 7g, = 0.
For each party P, € J 1) and & current-state view state;
(initially set to em; ﬂ-‘[Algorithm ExtendPolicy for gum,.); =

Party managem|

and the (sub-set) o T
Pl function Enmnpuunu‘ state, Nxt8C

already then it is o V all-b . mee the ,-[Algorithm isvalidstatey(st) |
T >0, It is alsd ot e 3 J
from Pps or H) 4
A party is conside Nat ¢ DmavirExrixsion(I7;, state, ! Let st = sty][... [lstn
071' Let 72 be current ledger time (compute for cach st; do
v ! - —
retponas (cotn] ‘;m uxtBC as a vector ((hFlag, NxtBC Extract the transaction sequence t%; ¢~ tX; 1,..., tX; ,, contained in st;
. Nee o -
st « gen © Initialize the genes
L lxPCP if |state| > windowSize then o Determ e i o do &
Set Tiow = Tarare[lstate| ~ vindowsi: -

olse if the first transaction in t¥; is not a coin-base transaction return false
Set 715y + 0 Nie e
(a) Set 3 oldValid TxMissing «- false 3 for j = 2 tu |t%;| do
for each list ¥xtBC, of transaction 1Ds ¢
i€
Use the txid contained in NxtBC, to st ¢ blockifyg(N;)

2. 16 1 was red

(b) Com|
stat
(c) For o Let 1% = (tx1,. .., EXipee,) denote
(d) 1f thd if tx) is not a evin-bese transaction - -
for af return Ny Ni « Niflexi ;
elso st’ « st'[|st;
3. Depending Ny return true
~ Subn for j =2 to |NxtBC,| do
"I Set at, + Nockﬂyg(‘\‘.)
the if Vakd Txg(tx,, state|[st,) = 0 then
() _ return Ne o Default Extenslon If adversarlal proposal is invalid
®) Ny Nillexy
() Set st, « blockifyg (N)
~ Reod if the propasal s declared to be an honest block, .., hFlag, = 1 then
s for each BTX = (tx,txid, ', Pi) € butfer of an honest party | with time ' < ns ~ =22 do
retul if Vakd Txg(tx, state||st,) = 1 but tx & N, then
- Mai oldValid TxMissing « true o A transaction is missing in adversarial propesal.
N« N||¥,
state ¢ state|[st,
Taters + Torarel|Te
¢ max{{vindouSize} U {k | sty € state A proposal of sty had hFlag = 1}} © Determine mast recent
honestly-generated block in the interval behind the head
if |state| ~ j > n then
return Ny & Adversary proposed too few honestly generated blocks
if |state| > windouSize then
& Update e the time of the state block which is windowSize blodks behind the head of the current,
possibly extended state
Set T 4 Tarare||state| — vindowSize + 1]
clse
Set Tyou +
1f 7o = Tiow < BINTi%eyiace then v Ensure that ledger does not proceed too fast
return ¢
else If iy > 0 and 1 - Moy > BAXTi%0yins:e then o A sequence of blocks cannot take too much time.
return Ny
olse if 1y =0 and 7. — Ty > 2 - maxTioey e then & Bootstrapping cannot take too much time
return
else if oidValidTxMissing then & If ot all old enough, valid transactions have been included
lﬂt\lf_ll 4t
return N

if ValidTxg (tx; j,st||st) = 0 return false
B J

Fienra 12: Tha avtend nalicv of the Riteoin Tadeor

How can we add randomness to ledger?

Let’s design a new ledger

Genarals The functlonalhy e parumetsisad by fout algoihass Valdaes, ExandPokcy, Blociy, aad prdictins, aloog
with two €N, The manages variables state, NxtBC, batfer, 7., and T
described above. Initially, state (= (.m. = KXUHC ' £, butfax i D, 7g, = 0.
For each party P, J) o o curment-state view seate;
(initially set to ean ﬂ-‘[Algorithm ExtendPolicy for G2); =

Party managem{

and the (sub-set) o T
Pl function Exrmnpaun(.t, state, Nxt8C

already then it is o W all-b e and hence the ,-[Algorithm isvalidstatey(st) |
s 2 > 0, It is alsd tion 4 stend J
from Pps or H) 4
A party s conside Net DimavirExtision(I], state, ! Let 8% i= st |... [|stn
r— Let 72, be current ledger time (compute for cach st; do
. ! . R
retponas (cotn] ':“"“ HxtBC as a vector {(hFlag,, NxtBC Extract the transaction sequence £%; ¢ tx; 1,.. ., tX; , contained in st;
< Nee

LLaPCP if [state] > windowSize then & Determ

Set Tiow = Tarare[lstate| ~ vindowsi:

st « gen & Initialize the genesis s
for i=1ton do

olse if the first transaction in t¥; is not a coin-base transaction return false
Set Ty 4 0 Ni = txi
(a) Set 3 oldValid TxMissing «- false 3 for j = 2 tu |tx;| do
for each list ¥xtBC, of transaction 1Ds ¢
X

Use m: txid contained in NxtBC, to '_[Algorithm validStruct%(C))

2. 16 1 was red

(b) Com|
stat

(€) For d Let t% = (tx1..... Sjugene,) denote
(d) 1f thd if tx) is not a evin-bese transaction
for af return Ny res ¢ true
else if (length(C) = 0) or (H|[head(C)] > D) then
3. Depending N Tes - false
~ Subn for j =2 to |NxtBC,| do , else if length(C) = 1 then
ur Set at, + blockifyg (N,) res + (C = G)
the if Vakd Txg(tx,, state|[st,) = 0 then
(a) _ return Ne
(®) Ny Nyltxy
() Set st, « blockifyg (N)
~ Reod if the propasal s declared to be an honest block, i.e
11 for each BIX = (tx,txid, 7, P;) € buffor of an
retul if Vald Txg(tx, state||st,) = 1 but tx & N, tI
- Mair oldValid TxMissing « true
LRl N+ N||¥,
abor state ¢ state|[st, Cremp ¢ €
o+ FnanellrL for i=1to k do
. et
¢ max({vindousize} U {k | sty € state A if isvalidchain} (C;) and (length(C;) > length(Ciemp)) then
honestly-generated block in the interval hehmri lh(-l Ctemp < Ci
if |state| ~ § > n then — return Ceemp
return Ny & Advers
if |state| > windowSize then
& Update e the time of the state block which is windowSize blodks behind the head of the current,
possibly extended state
Set T 4 Tarare||state| — vindowSize + 1]
clse
Set Tyou +
if 7o ~ Tou < BANTiNeyiasce then o Ensure that ledger does not proceed too fast
return ¢
else If iy > 0 and 1 - Moy > BAXTi%0yins:e then o A sequence of blocks cannot take too much time.
return Ny
else if Ty =0 and 7. — 71w > 2 - 3axTiveuisew then & Bootstrapping cannot take too much time.
return
else if oidValidTxMissing then & If ot all old enough, valid transactions have been included
lﬂt\lr_l\ 4t
return N

J

& In this case, the chain is non-trivial and the most recent block is a valid proof-of-work.

Fienra 12: Tha avtend nalicv of the Riteoin Tadeor

How can we add randomness to ledger?

Let’s design a new ledger

The functionality Is p-uum:\mu‘d by four hlgnm'\nu Validate, ExtendPolicy, Blockify, and predict-time, Alnng

manages variables state, NxtBC, but fer, To, a

described above. Initially, state (= (,u,,- - IXKBE -, buttar 1= B, 77, = D.

For each party P, € } 1) and & current-state view

(initially set to em; Algorithm ExtendPolicy for gu,,c,,. |

Party managem|

i phe tubse] function ExrumPaun(IT state, NxtaC)
"H,Pos), hence the 1 1 1 %

already then it is W oll-by) Algorithm isvalidstatey(st)

oy > 0,0t s als t - SRS § J

from Pps ar M) s

A party Is conside Net ¢ DimavirExrission(I]), state,! Lot st := st Il llst.

\

tXi 1, ., tX; n, contained in st;

r-[Algorithm for Default State Extension } & Initialize the genesis s

function DnmuurExTuwoN(zf state, NxtBC, buffer, 7atate) sin-base transaction return false

We assume call-by-value and hence the function has no side effects
The function returns a policy-compliant extension of the ledger state
Let 71, be current ledger time (computed from Z7;) ']
Set Nyg ¢ txcoin-base of an honest miner

rID _J

mine,
Sort buffer according to time stamps and let € = (tx;,. .., tx,) be the transactions in buffer

Set st « blockifyg(Nae)
repeat > D) then
Let tk = (tx1,...,txn) be the current list of (remaining) transactions
for i=1ton do
if Valid Txj(tx;, state[|st) = 1 then
Nag + Nae|[tx: case, the chain is non-trivial and the most recent block is a valid proof-of-work.
Remove tx; from tx
Set st < blockifyg(Nar)
until Nyg¢ does not increase anymore
if [state| + 1 > windowSize then & Let Tiou be the time of the block which is windowSize — 1 blocks behind
the head of the state.
Set Tiow ¢~ Tstate||State| — windowSize + 2]
else
Set Tiou ¢ 0

ce1 chainp(C, st, q)
while 7/, — 710y > maxTimeuingow do —_—

i coin-base
St Ne 4 txliZs® of an honest miner with state st. The state s[[st is valid.
Nat + Nat||Ne
céictl > Compute the pointer s of the new block
if |state| + ¢ > windowSize then b Update moy to the time of the state block which is windouSize — ¢
Slocks behind the head.

Set Tiow ¢ Tatate[|state| — windowSize + ¢+ 1]
else
Set Tiow ¢ 0
return Nag

formly at random from {0,1}" and set B ¢ (s,st,n).

L LT ———
return Ny

else if Ty = 0 and T2, — 71 > 2 28xTiDALw then B
return

else if oldValid TxMissing then & If not all old enough, valid transactions have been included
return

return N

Fienra 12: Tha avtend nalicv of the Riteoin Tadeor

How can we add randomness to ledger?

Let’s design a new ledger

The functionality Is p-uum:\mu‘d by four hlgnm'\nu Validate, ExtendPolicy, Blockify, and predict-time, Alnng

manages variables state, NxtBC, but fer, To, a

described above. Initially, state (= (,u,,- - IXKBE -, buttar 1= B, 77, = D.

For each party P, € } 1) and & current-state view

(initially set to em; Algorithm ExtendPolicy for gu,,c,,. |

Party managem|

i phe tubse] function ExrumPaun(IT state, NxtaC)
"H,Pos), hence the 1 1 1 %

already then it is W oll-by) Algorithm isvalidstatey(st)

oy > 0,0t s als t - SRS § J

from Pps ar M) s

A party Is conside Net ¢ DimavirExrission(I]), state,! Lot st := st Il llst.

\

tXi 1, ., tX; n, contained in st;

r-[Algorithm for Default State Extension } & Initialize the genesis s

function DnmuurExTuwoN(zf state, NxtBC, buffer, 7atate) sin-base transaction return false

We assume call-by-value and hence the function has no side effects
The function returns a policy-compliant extension of the ledger state
Let 71, be current ledger time (computed from Z7;) ']
Set Nyg ¢ txcoin-base of an honest miner

rID _J

mine,
Sort buffer according to time stamps and let € = (tx;,. .., tx,) be the transactions in buffer

Set st « blockifyg(Nae)
repeat > D) then
Let tk = (tx1,...,txn) be the current list of (remaining) transactions
for i=1ton do
if Valid Txj(tx;, state[|st) = 1 then
Nag + Nae|[tx: case, the chain is non-trivial and the most recent block is a valid proof-of-work.
Remove tx; from tx
Set st < blockifyg(Nar)
until Nyg¢ does not increase anymore
if [state| + 1 > windowSize then & Let Tiou be the time of the block which is windowSize — 1 blocks behind
the head of the state.
Set Tiow ¢~ Tstate||State| — windowSize + 2]
else
Set Tiou ¢ 0

ce1 chainp(C, st, q)
while 7/, — 710y > maxTimeuingow do —_—

i coin-base
St Ne 4 txliZs® of an honest miner with state st. The state s[[st is valid.
Nat + Nat||Ne
céictl > Compute the pointer s of the new block
if |state| + ¢ > windowSize then b Update moy to the time of the state block which is windouSize — ¢
Slocks behind the head.

Set Tiow ¢ Tatate[|state| — windowSize + ¢+ 1]
else
Set Tiow ¢ 0
return Nag

formly at random from {0,1}" and set B ¢ (s,st,n).

L LT ———
return Ny

else if Ty = 0 and T2, — 71 > 2 28xTiDALw then B
return

else if oldValid TxMissing then & If not all old enough, valid transactions have been included
return

return N

Fienra 12: Tha avtend nalicv of the Riteoin Tadeor

How can we add randomness to Iedger’?

Let’s design a new ledger

The funcionality s parametriaed by four algorithins Valdte, ExtendPoicy, Blockty, and reic-ime, sloag
€N. The manages variables state, NxtBC, buffer, vo, a

encrined sbove, aiiall seate Lo e i RECBE 1o 6 Butbur o Begg o

For each party P, € } 1) and & current-state view

(initially set to em; Algorithm ExtendPolicy for gu,,c,,. |

Party managem|

and the (sub-set) function Exrrvnl’nun’f’ state. NxtBC

P,H, Pos are all ctlor ' - — -

already then it is « -4y Algorithm isvalidstatey(st)

7 > 0, It is als This Function implements ¢ : J

from Pps or H) y

A party Is conside Net ¢ DimavirExrission(I]), state,! Lot st := st Il llst.

tXi 1, ., tX; n, contained in st;

r-[Algorithm for Default State Extension } & Initialize the genesis s

function DerauLrEXTENSION(Z, state, NxtBC, buffer, Fiace) sin-base transaction return false

We assume call-by-value and hence the function has no side effects

The function returns a policy-compliant extension of the ledger state

Let 71, be current ledger time (computed from Z7;) ']
Set Nag - txcoin-base of an honest miner J

mine
Sort buffer according to time stamps and let tx = (tx;,...,tx,) be the transactions in buffer

Set st « blockifyg(Nar)
repeat >D) then
Let tX = (tx1,...,tX,) be the current list of (remaining) transactions
for i=1ton do
if Valid Txj(tx;, state[|st) = 1 then
Nag = Nag|[tx: case, the chain is non-trivial and the most recent block is a valid proof-of-work.

Remove tx; from t*
Set st ¢ blockifyg

until Nyg¢ does not increase & u
=== And re-prove security from _
the head of the state.
Set Tiow ¢~ Tstate[|state]| -
else

Set Tiow ¢ 0

c+1
while 7/, — Tiou > maxTimeus
Set N, « txgoin-base of a) L
mine
Nat + Nat||Ne
cé-c+1 & Compute the pointer s of the new block
if [state|+ ¢ > windowSize then > Update Tyow to the time of the state block which is windowSize — ¢
blocks behind the head. formly at random from {0,1}" and set B + (s,st,n).
Set Tiow ¢ Tstate[[state| — windowSize + ¢+ 1]
else
Set Tow ¢~ 0
return Ny

o vt i - mea 6 i - s s e K
e return Ny
adved else if Ty =0 and 1. — Ty > 2 - maxTineu s then >
return Ny

- else if okdValidTxMissing then & If not all old enough, valid tramsactions have been included
return

return N

Fionra 12° Tha avtend nalicv of the Ritenin Tadeor

How can we add randomness to ledger?

Adding Randomness without changing the ledger

N
Gledger

How can we add randomness to ledger?

Adding Randomness without changing the ledger

4 o) g;

o /

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce
WwBU «
L
{ Glcdgcr}

o /

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce
WwBU 5 |
{ Glcdgcr} (N ’t) ‘

o /

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce
WwBU 5 N
{ Glcdgcr} (N ’t) (N ,t) »> ’

o /

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce
WwBU 5 N
{ Glcdgcr} (N ’t) (N ,t) »> ’

o /

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce

WwBU

(N,b)) (N.1)

@ledger

o J

Within a predefined time window o:
®* The adversary needs to insert a block whose nonce was
issued within this window by the wrapper
* The window depends on chain growth, chain quality, and
network delay

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce

WwBU

(N,b)) (N.1)

@ledger

o J

Within a predefined time window o:
®* The adversary needs to insert a block whose nonce was
issued within this window by the wrapper
* The window depends on chain growth, chain quality, and
network delay

Every &-long window has a block that the adversary
cannot predict before that window

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce

WwBU

(N,b)) (N.1)

@ledger

o J

Within a predefined time window o:
®* The adversary needs to insert a block whose nonce was
issued within this window by the wrapper
* The window depends on chain growth, chain quality, and

network delay Weak Beacon [ACKZ19]
Every &-long window has a block that the adversary
cannot predict before that window

How can we add randomness to ledger?

Adding Randomness without changing the ledger

/ \ Give me nonce

WwBU

(N,b)) (N.1)

@ledger

Bitcoin implements the

_ / wrapped ledger [ACKZ19]

Within a predefined time window o:
®* The adversary needs to insert a block whose nonce was
issued within this window by the wrapper
* The window depends on chain growth, chain quality, and

network delay Weak Beacon [ACKZ19]
Every &-long window has a block that the adversary
cannot predict before that window

Summary

e UC definitions of postdate, backdate and
timed security for the notions of: signature, ZK
and Signature of Knowledge

e Definition and construction of a weak-beacon
in the strong ledger-hybrid model

Thank you

